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Abstract

We document that implied volatility (IV) curves extracted from short-term equity
options frequently become concave prior to the earnings announcements day (EAD)
reflecting a bimodal risk-neutral distribution for the underlying stock price. Firms with
concave IV curves exhibit significantly higher absolute stock returns on EAD and higher
realized volatility after the announcement, as compared to firms with non-concave IV
curves. Hence, concavity in the IV curve constitutes an ex-ante option-based signal for
event risk in the underlying stock. Returns on delta-neutral straddles around EADs
are significantly lower in the presence of concave IV curves, showing that investors pay
a high premium to hedge against this event risk.
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1 Introduction

Earnings announcements are scheduled corporate events that disseminate substantial fun-

damental information to investors. A voluminous literature has examined several features,

such as the behavior of stock returns (see, for example, Ball and Brown (1968), Ball and

Kothari (1991), Beaver (1968), and Frazzini and Lamont (2007)) and systematic risk (see, for

example, Patton and Verardo (2012) and Savor and Wilson (2016)), around these earnings

announcements days (EADs).

We posit that these scheduled announcements can be viewed as referendums on firm value.

On these occasions, investors anticipate that the underlying stock price will, more likely than

not, exhibit a large movement in either direction upon the announcement. This anticipated

stock price jump induces bimodality in the ex-ante risk-neutral distribution (RND) and con-

cavity in the implied volatility (IV) curve. Using data on very short-term options (primarily

weeklies), we first empirically document that bimodality in the RND and concavity in the

IV curve are pervasive features prior to EADs and then study the pricing implications of

these phenomena.

The possibility of stock price jumps can also translate into increased volatility around

EADs. In fact, Dubinsky, Johannes, Kaeck, and Seeger (2019, DJKS henceforth) and Patell

and Wolfson (1979, 1981) document an increase in IV in the runup to EADs and a sharp

drop afterwards. However, the bimodality that we document is a fundamentally different

concept of risk relative to a more dispersed distribution (volatility), or a negatively skewed

distribution (a reflection of tail risk), or a more fat-tailed distribution (kurtosis).

The documented bimodality in the central part of the RND implies that, subject to a

relatively minor risk-adjustment due to the very short option expiry, the prevailing stock

price will most likely be around either of the two identified modes. This means that the

stock price after the announcement will most likely be x% above or y% below the current

price; each outcome may also be associated with a different volatility level. This feature

is, therefore, also different from the common modeling assumption of a low-probability,

randomly timed Poisson jump (see, for example, Ball and Torous (1985) and Merton (1976)),

which can lead to an IV smirk and a left-tailed RND, capturing tail risk and explaining the

expensiveness of OTM puts (Bates (1996, 2000), Pan (2002), and Yan (2011)). We dub this

ex-ante bimodality as “event risk” for the underlying stock and argue that a concave IV

curve provides an option-based signal for this type of risk.1

We show that during our sample period (2013-2019) a large fraction (37.4%) of IV curves

1According to Liu, Longstaff, and Pan (2003, p. 231), event risk is defined as “the risk of a major event
precipitating a sudden large shock to security prices and volatilities.”
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extracted from short-expiry equity options become concave prior to EADs. This compares

to just 3.5% of IV curves exhibiting concavity on a typical trading day when option expiry

does not span an EAD. The concave IV curves that we document are typically inverse U-

shaped, S-shaped, or W-shaped. These shapes are in stark contrast with the convex volatility

smiles and smirks (or skews) that are commonly observed for equity options, where out-of-

the-money (OTM) puts trade at higher volatility relative to at-the-money (ATM) options.

Interestingly, the feature of concavity mostly disappears right after the announcement, as

the uncertainty surrounding this event is resolved, and the IV curves revert to their standard

convex shape.

Concavity appears in short- rather than long-expiry options. This feature arises due to the

relative effect between the anticipated jump and the diffusion component of the underlying

stock price process. As expiry shrinks, the effect of the anticipated jump dominates the

effect of the diffusion component; this renders the underlying RND bimodal and the IV curve

concave. On the other hand, as the expiry increases, the diffusion component dominates, the

RND reverts to unimodality and the IV curve to convexity. The sparsity of short-term equity

options prior to our sample period may explain why this feature has not been documented

in the prior literature.

Having documented these novel features of IV curves around EADs, we examine the

informational content of concavity. Our analysis reveals that concave IV curves possess

significant predictive ability with respect to stock returns on EAD and post-EAD realized

volatility. First, we find that, on average, firms exhibiting concave IV curves have an absolute

abnormal stock return of 5.96% on EAD, which is 1.8% higher than the corresponding

absolute return for firms with non-concave IV curves. Second, we find that firms with

concave IV curves exhibit an average realized stock return volatility of 45.86% p.a. in the

10-day interval after the announcement, which is 11.05% higher than the corresponding

realized volatility of firms with non-concave IV curves.

These findings show that investors are able to identify earnings announcements that

trigger larger than average stock price movements and volatility. Anticipating these effects,

investors trade accordingly in the option market, giving rise to concave IV curves and bimodal

RNDs, which in turn signal ex-ante the impending event risk.

The most obvious way investors could speculate on or hedge against large stock price

swings on EADs, regardless of their direction, is by purchasing straddles. Delta-neutral ATM

straddles have been commonly used to capture the price of volatility risk for the underlying

stock returns (Bakshi and Kapadia (2003) and Coval and Shumway (2001)). Therefore,

we examine whether delta-neutral straddle returns on EADs differ across concave and non-
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concave IV curves. Interestingly, we find that concave IV curves are followed by a 6.17%

lower delta-neutral straddle return on EAD, as compared to non-concave IV curves. These

findings underscore the fact that, in the presence of concave IV curves, investors typically pay

a significantly higher premium to hedge against the uncertainty caused by the forthcoming

announcement.

To directly show that ATM straddles are particularly expensive in the presence of concave

IV curves, we introduce a simple measure of their expensiveness. Specifically, we compute

the ratio of the sum of the ATM put and call prices divided by the underlying stock price.

Intuitively, this ratio indicates the required percentage change in the underlying stock price,

in either direction, to offset the cost of the ATM straddle. Hence, this ratio is termed as the

implied move for the underlying stock price. The higher (lower) the value of this ratio, the

more (less) expensive it is to purchase an ATM straddle, ceteris paribus.

We find that, on average, the implied move prior to the EAD is 2.31% higher for non-

concave IV curves. This strongly significant differential confirms that ATM straddles are

much more expensive prior to EADs in the presence of concave IV curves. This finding

can help explain why these straddles yield lower returns on EADs despite the larger than

average absolute stock returns observed following the formation of concave IV curves. This

finding also provides an alternative way to illustrate that investors pay a significantly higher

premium to hedge against the event risk that is signalled by a concave IV curve prior to the

announcement.

Overall, our study shows that large stock price movements are systematically anticipated

by investors prior to EAD and can be detected ex-ante because they dramatically affect the

pricing of short-expiry options. In the case of concave IV curves, we show that large stock

price movements are not just a possibility due to the announcement, but rather a very likely

outcome. This feature gives rise to a bimodal short-term RND for the underlying stock price

(and return), which is in stark contrast with the established paradigm in asset pricing that

relies on unimodal return distributions.

Even though the main objective of our paper is empirical, to better understand the drivers

of concave IV curves and bimodal RNDs, we introduce an option pricing model building on

DJKS (2019) and Piazzesi (2000). DJKS model EAD jump size to be normally distributed,

leading to a large increase in short-term ATM IV and a downward sloping term structure

prior to the announcement. In contrast to them, we allow the jump size to follow a mixture

of normal distributions. While seemingly an innocuous modification, our assumption is more

consistent with the different conceptual underpinnings of price jump risk and volatility risk.

More importantly, our modeling assumption can naturally generate a bimodal RND. In this
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respect, our model is closer in spirit to the studies that have used mixtures of log-normal

distributions to empirically fit the RNDs for various assets prior to geopolitical events or

policy decisions (see Hanke, Poulson, and Weissensteiner (2018), Leahy and Thomas (1996),

Melick and Thomas (1997), and Mirkov, Pozdeev, and Söderlind (2016)).

Our study contributes to various strands of the literature. Starting from the early studies

of Patell and Wolfson (1979, 1981), there is a growing literature showing that option-based

measures embed significant information prior to earnings announcements (see, for example,

Amin and Lee (1997), Barth and So (2014), Billings and Jennings (2011), Gao, Xing, and

Zhang (2018), Ni, Pan, and Poteshman (2008), and Xing, Zhang, and Zhao (2010)). We add

to this literature by showing that the curvature properties of the IV curve contain significant

predictive ability over stock returns, realized volatility, and straddle returns around EADs.

Our study is also related to the literature showing that stock prices do jump upon the

release of news in the form of pre-scheduled macroeconomic (Savor and Wilson (2013))

or earnings announcements (Lee (2012), Lee and Mykland (2008)). Contributing to this

literature, we show that large stock price movements are systematically anticipated prior to

the announcement and they can be detected ex-ante because they dramatically affect the

pricing of short-expiry options.

Our setup is closely related to that of DJKS (2019), who also examine the impact of

predictably timed EAD stock price jumps on option pricing. However, their focus is on the

term structure of ATM IV prior to the announcement, whereas we examine the curvature

properties of the IV curve for short-term equity options. Importantly, in their model, the

EAD jump size is assumed to be normally distributed and its mean is a transformation of its

volatility. As a result, the only effect of this anticipated price jump is a large increase in short-

term ATM IV, leading to a downward sloping term structure prior to the announcement. The

distribution of stock prices remains unimodal and the jump has no effect on the curvature of

the IV curve across moneyness levels. Therefore, the model of DJKS cannot reproduce the

novel but pervasive empirical features we document in our study, namely concavity in the IV

curve and bimodality in the RND of the underlying stock price prior to the announcement.

2 Data and Methodology

2.1 Option Data and IV Curves

We construct IV curves using option data from OptionMetrics during the period 2013 to

2019. For each calendar year, we select the 100 firms with the highest option trading volume,
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requiring the underlying to be common stock (share codes 10 or 11) with share price higher

than $5. This yields a total sample of 178 firms during the entire period. The choice of the

sample period and the cross-section of firms are dictated by the availability of short-term

option data. Weekly equity options have been actively traded for a range of strikes only in

the last decade. Hence, OptionMetrics provides very sparse data for short expiries prior to

2013.

Our primary focus is on option-implied information related to earnings announcements,

so we utilize short-term options whose expiry spans the EAD. In particular, we keep options

with expiry between 3 and 13 calendar days ahead. We obtain information on the timing of

quarterly EADs from I/B/E/S. Following common practice in the literature (see Barth and

So (2014) and Michaely, Rubin, and Vedrashko (2014)), if the announcement is made after

the market close, the next trading day is defined as the EAD.

To ensure that the information embedded in IV curves is meaningful, we apply a number

of standard filters to the option data. Specifically, we discard options with zero open interest,

zero trading volume, zero bid price, mid-quote price less than $0.125, non-standard settle-

ment, or missing implied volatility. We also discard options that violate standard arbitrage

bounds or when the bid is higher than the ask price. To ensure that our findings are not

driven by particularly illiquid options, we also discard options when the bid-ask spread is

higher than 20% of the mid-quote price.

To construct the IV curve, we utilize the (annualized) IVs of at-the-money (ATM) and

out-of-the-money (OTM) options provided by OptionMetrics. To avoid an artificial jump at

the ATM region, which could arise from ATM puts potentially trading at higher IV relative

to ATM calls, we follow the blending approach of Figlewski (2010). Specifically, we blend

the IVs of puts and calls whose strike price K lies within ±2% of the underlying spot price

into a single point as follows:

IVblend(K) = aIVput(K) + (1− a)IVcall(K), (1)

where a = (Khigh − K)/(Khigh − Klow) and Khigh (Klow) is the highest (lowest) strike in

this ±2% range. To ensure a good coverage of the moneyness range, after the blending we

require at least six options for a given expiry, with at least two puts and two calls.

Equipped with these IV points, we fit a quintic spline using the function spaps in MAT-

LAB.2 This yields the smoothest IV curve in the moneyness space K/S, where S is the stock

price, subject to a tolerance level for the sum of squared errors between the actual and the

2A quintic spline ensures that the third derivative of the IV curve (and hence the option price function)
is continuous, yielding a well-behaved RND (see Figlewski (2010)).
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fitted IVs. In the spirit of Bliss and Panigirtzoglou (2002, 2004), the quintic spline minimizes

the following objective function:

ρ

N∑
i=1

[
IV (Ki)− ÎV (Ki; θ)

]2

+

∫ ∞
−∞

S(3)(x; θ)2dx, (2)

where IV (Ki) is the actual implied volatility for strike Ki, ÎV (Ki; θ) is the corresponding

fitted implied volatility, which is a function of the parameter set θ that defines the quintic

spline S(θ), and ρ is a smoothing parameter that is optimally selected to ensure that the

sum of squared IV errors does not exceed a given tolerance level.3

To compute the RND corresponding to the fitted IV curve, we use the standard result

of Breeden and Litzenberger (1978). The density function is given by f(K) = erT∂2C/∂K2,

where r is the interest rate and C is the call option price as a function of the strike price K.

The fitted IV curve contains 1,001 IV points. These IVs are converted to call option prices

using the Black-Scholes formula. In the absence of a continuum of strikes, we compute the

second partial derivative in the above formula using finite differences and derive the RND

for the range of the available moneyness levels.

Having imposed a number of strict filters on the option data, we seek to fit well the actual

IV points, and hence we opt for a low tolerance level. This tolerance level corresponds to a

0.01% mean squared error between the actual and the fitted IVs. However, to ensure that

the fitted IV curve is not too erratic and does not correspond to an ill-behaved RND, we

impose further conditions. We require that no interpolated IV point is negative and that the

corresponding RND does not exhibit a negative density point or more than two modes. If

any of these conditions is violated, we increase the upper bound of the mean squared error

in steps of 0.005% until the conditions are met. Our final sample consists of 1,875 IV curves

on the trading day prior to EAD for the firms in our sample.

2.2 Definition of Concave IV Curve

We introduce a definition of concavity based on the first and second derivatives of the fitted

IV curve with respect to moneyness.4 Specifically, we define an IV curve to be concave when

the following three conditions hold. First, the second derivative of the fitted IV curve is

3Parameter ρ controls the tradeoff between the goodness-of-fit and the smoothness of the spline function;
the latter is captured by its integrated squared third derivative. Setting a low tolerance level ensures that the
spline fits well the actual IV points at the expense of smoothness. To the contrary, setting a high tolerance
level yields a rather smooth spline that may not fit well the actual IV points.

4First and second derivatives of the fitted IV curve are computed using finite differences.
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negative for a continuous moneyness (K/S) range of at least 0.03 points, i.e., for a continuous

range of strikes that amount to at least 3% of the underlying spot price. Second, we require

that the fitted IV curve exhibits a stationary point within the moneyness range where it

exhibits concavity. Third, this stationary point is located between the second lowest (Kmin +1)

and the second highest (Kmax−1) strikes of the actual IV points used to fit the smooth IV

curve.

These conditions address the potential concern that the documented concavity may be

an artefact of outliers or the employed smoothing spline. In particular, they ensure that our

definition does not simply capture very local infection points or marginally concave parts of

the IV curve. They also ensure that the concavity does not arise from the lowest or highest

actual strikes, which typically correspond to deep OTM options.

This definition is sufficiently general to capture various shapes of concavity, such as

the inverse U-shape, W-shape, and S-shape IV curves illustrated in Figure 1. Using this

definition, we define the dummy variable CONCAVE, which takes the value 1 when the IV

curve is concave and zero otherwise.

2.3 Other Variables and Data Sources

In addition to CONCAVE, we use a number of other variables in the subsequent empirical

analysis. The definition of these variables is provided in Appendix A. For each firm, we

compute at the daily frequency its market beta (BETA), the natural logarithm of market

capitalization (LN(SIZE)) and stock price (LN(PRICE)), five-day cumulative stock return

(RUNUP), momentum return (MOM ), stock turnover ratio (STOCKTR), and idiosyncratic

volatility (IVOL). The source of stock prices, trading volumes and number of outstanding

shares is CRSP. With respect to firm fundamentals, we utilize the book-to-market value

ratio (B/M ) and the leverage ratio (LEVERAGE ) using quarterly data from COMPUSTAT.

We also use the number of analysts providing earnings forecasts (NUMEST ), the standard

deviation of these forecasts (DISPERSION ), and the differential stock beta around EADs

(ANNBETA) as in Barth and So (2014). Analysts forecast data are obtained from I/B/E/S.

We also use a number of option-based variables. Specifically, we compute the ATM

implied volatility (ATMIV ) and the difference between the realized volatility and ATMIV

(RVIV ) of Goyal and Saretto (2009). Since our focus is on short-expiry options, we con-

struct ATMIV and RVIV utilizing the 10-day volatility surfaces that have been recently

introduced by OptionMetrics. In addition, we compute the Risk-Neutral Skewness (RNS )

and Risk-Neutral Kurtosis (RNK ), following the approach of Bakshi, Kapadia, and Madan

(2003). We also use the option-to-stock trading volume ratio (O/S ) of Roll, Schwartz, and
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Subrahmanyam (2010). Last but not least, we compute the term structure estimate of ATM

implied volatility (TSIV ) proposed by DJKS (2019).

2.4 Summary Statistics

Table 1 presents the summary statistics for the variables used in our analysis. Their values

are computed on the day prior to EAD and they are winsorized at the 1% and 99% levels.

We find that 37.4% of the IV curves extracted prior to the EAD exhibit concavity. These IV

curves are computed from short-term options, with an average EXPIRY of 6.47 calendar days

and a large number of STRIKES (average of 16.72 strikes). The latter feature is consistent

with the fact that our sample consists of very large firms, with an average (median) market

capitalization of $56,387 ($66,171) million. As a result, these firms exhibit a much lower

IVOL (average = 24.17% p.a.), they trade at a much higher price (average = $75.94), they

exhibit low B/M ratios (average = 0.35), and they are followed by a very large number of

analysts (average = 24.32), as compared to the corresponding values typically encountered

in studies that utilize the entire CRSP universe.

Regarding option-based variables, the median RNS (RNK ) value is −0.26 (3.42). In line

with the arguments of Patell and Wolfson (1979, 1981), ATMIV is substantially higher prior

to EADs, with an average value of 42.31% p.a.. As a consequence, RVIV takes very large

negative values, with an average of −16.68% p.a.. Moreover, TSIV is almost always positive,

with an average value of 6.58% p.a.. This confirms the findings of DJKS (2019) that the

term structure of ATM implied volatility is downward sloping prior to EADs. Lastly, we also

find substantial stock trading activity prior to the EAD, with an average daily STOCKTR

value of 2.27%, and an even higher trading activity in the option market, with an average

O/S value of 27.09%.

Table 2 reports the pairwise correlations among these variables. Our main focus is on

the correlation properties of the newly proposed variable CONCAVE. Most notably, we find

that CONCAVE is positively correlated with IVOL, ATMIV, RNS, and TSIV, whereas it is

negatively correlated with RNK and RVIV. Hence, concave IV curves are associated with

higher levels of ATM implied volatility and a steeper downward sloping IV term structure

prior to EAD. Moreover, CONCAVE exhibits a positive correlation with STOCKTR, O/S,

and NUMEST, which indicates that concave IV curves more often appear when there is

substantial coverage by financial analysts as well as high trading activity by investors prior

to the announcement.

However, it should be noted that the reported correlations for CONCAVE are not partic-

ularly high (mostly, much less than 0.40 in absolute value), alleviating the potential concern
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that CONCAVE may simply mimic another firm characteristic. To the contrary, Table 2

illustrates the extremely high pairwise correlations between ATMIV, RVIV, TSIV, IVOL,

and LN(SIZE) prior to EADs.

Table 3 compares the average values of these variables across observations of concave

and non-concave IV curves on the day prior to EAD. We find that concave IV curves are

extracted from sets of options with a somewhat shorter average expiry and a higher average

number of available strikes. We also find that concave IV curves are associated with firms

that, on average, are followed by more analysts, they are relatively smaller, and they exhibit

lower B/M and LEVERAGE ratios.

Moreover, we observe that concave IV curves are associated with significantly higher

average values of BETA, IVOL, STOCKTR and O/S as well as higher average stock prices

and returns (LN(PRICE), RUNUP, MOM ) prior to the EAD. Consistent with the pairwise

correlations presented in Table 2, we also report that concave IV curves are accompanied,

on average, by significantly higher ATMIV, RNS, and TSIV values and significantly lower

RNK and RVIV values relative to non-concave IV curves.

3 Features and Determinants of Concave IV Curves

3.1 Features of Concave IV Curves

IV curves for equity options typically exhibit a smile or a smirk (see, for example, Rubinstein

(1994), Toft and Prucyk (1997), and the review of the early literature in Jackwerth (2004)),

which corresponds to a convex IV curve where OTM puts trade at higher IV than ATM

options. This pattern corresponds to an important deviation from the Black and Scholes

(1973) model, where implied volatility should be constant across moneyness levels. In sharp

contrast to the commonly documented convex IV curves for equity options, as shown in

the summary statistics, we often observe concave IV curves prior to EADs. This section

illustrates the main features of concave IV curves observed in the data.

Figure 1 provides examples of the three main types of concavity we encounter in our

sample. In this figure, circles indicate implied volatilities corresponding to actual traded

strikes, whereas the curve is fitted using a quintic spline. Panel A shows an inverse U-shape

IV curve for Twitter, computed from options with three days to expiry on 29th July, 2014.

Here the IV of OTM calls and puts is substantially lower than the IV of ATM options. Such

an inverse U-shape IV curve is mentioned in Hull (2009, p. 398), who describes it as a

“frown” and provides a textbook example how this shape could arise in equity options.
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Panel B of Figure 1 illustrates an S-shape curve for Ebay, computed from options with

three days to expiry on 29th April, 2014. This curve exhibits two stationary points. In this

particular example, the concave part of the curve is located in the OTM calls region, whereas

the OTM puts region exhibits a typical convex shape. An interpretation of this shape is that

concavity arises in a specific moneyness range, where options are trading at higher volatility

relatively to neighboring strikes.

Panels C and D provide examples of an even more intriguing type of concavity, for Google

and Netflix, respectively, computed from options with four days to expiry on 23rd April and

16th July 2018, respectively. This W-shaped IV curve exhibits three stationary points, with

a U-shape curve followed by an inverse-U shape curve, which is in turn followed by another

U-shape curve. Here, concavity arises in specific ranges of moneyness, with near-the-money

options trading at volatility levels as high as, or even higher than, deep OTM options.

The above shapes of concavity systematically appear in short-expiry equity options just

before EADs. We find that these shapes typically disappear right after the announcement,

with the IV curve reverting to a standard convex shape. Figure 2 illustrates this pattern

using as example the earnings announcement of Apple that took place right after the market

close on 28th October, 2013. Whereas the IV curve extracted just before the announcement

from options with four days to expiry exhibits a clear W-shape, it reverts to a smile on the

following day using options with the same expiry date.

Figure 3 further illustrates that IV curves often become concave in the runup to the EAD

but they subsequently revert to their standard convex shape. Specifically, Figure 3 reports

the fraction of concave IV curves for the firms in our sample on trading days around the

EAD d. We observe that the fraction of concave IV curves gradually increases from 17.5%

on d−5 to 25.2% on day d−2, reaching the peak of 37.4% on the trading day prior to EAD.

Right after the announcement, there is a sharp drop in the fraction of IV curves exhibiting

concavity to only 7.8% on d. This fraction subsequently drops further and hovers around

4% from d+ 1 onwards.

To emphasize how uncommon it is to find a large fraction of concave IV curves using

options whose expiry does not span an EAD, we perform the following analysis. For the firms

in our sample, we impose the same data filters and follow the same steps of the methodology

described in Section 2 to compute CONCAVE on all trading days during the period 2013-

2019. We extract 72,736 firm-day IV curves from very short-term options whose expiry does

not span an EAD. We find that only 3.5% out of these observations exhibit a concave IV

curve. This finding further alleviates the potential concern that the large faction of concave

IV curves we identify in the runup to the EAD may be an artefact of our methodology or
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the use of very short-expiry options.

3.1.1 Bimodality in RND

The main variable of interest in our analysis (CONCAVE ) is defined with respect to the

properties of the IV curve. The shape of the IV curve is a reflection of the properties of the

RND for the underlying stock price. For example, a symmetric volatility smile corresponds

to a leptokurtic RND, whereas a volatility smirk (or skew) is associated with a negatively

skewed RND (see the related discussion in Jackwerth (2004) and Hull (2009, chapter 18)).

Figure 4 illustrates that a concave IV curve reflects a bimodal RND for the underlying

stock price. This is a rather unusual feature. RND bimodality implies that at option expiry,

the underlying stock will most likely trade around either of the two identified price modes.5

Panel B of Figure 4 illustrates the RND for the stock price of Amazon, extracted from options

with eight days to expiry on April 26, 2018, i.e., just before the earnings announcement that

took place right after the market close. Whereas the closing stock price was $1,517.96 on that

day, the 8-day RND reveals two price modes at expiry; one at $1,444.80 (i.e., 4.8% lower)

and the other one at $1,602.00 (i.e., 5.5% higher). Following the announcement, Amazon’s

stock price had a positive return of 3.6% on April 27 and closed at $1,580.95 (i.e., 4.15%

higher) on May 4, at option expiry.

Another interpretation of RND bimodality prior to an EAD, as illustrated in Figure 4, is

that a discrete price movement or jump is anticipated due to the forthcoming announcement.

Hull (2009) argues that a concave, inverse U-shape IV curve reflects a bimodal RND for

the underlying asset price, which in turn arises “when a single large jump is anticipated.”

Therefore, we argue that a bimodal RND and a concave IV curve provide option-based

signals of impending event risk in the underlying stock. Our analysis reveals that earnings

announcements frequently give rise to event risk, which is priced in the option market, and

hence can be detected ex-ante.

RND bimodality is an important feature that distinguishes our study from DJKS (2019).

The model introduced by the latter study allows for predictably timed price jumps on EADs.

However, by assuming a normally distributed EAD jump size, their implied RND remains

unimodal, and hence their model cannot reproduce the concave IV curves observed in the

data.

We emphasize that concave IV curves predominantly appear in short expiry options.

5It should be noted that the RND indicates risk-neutral probabilities rather than physical probabilities.
However, since we utilize firm-level options with very short expirations, the adjustment from risk-neutral to
physical probabilities is expected to have a relatively minor effect.
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Figure 5 illustrates an example of fitted IV curves for Amazon across different expirations

(8, 22, 36, and 50 days) on April 26, 2018. Whereas the IV curve for the 8-day expiry clearly

exhibits a W-shape type of concavity, this feature is much less obvious for the 22-day expiry

and disappears for longer expiries.6

Intuitively, these patterns arise due to the relative effect of the anticipated stock price

jump on EAD versus the diffusion component of the underlying process. As expiry shrinks,

the effect of the anticipated price jump dominates the effect of the diffusion component,

rendering the underlying RND bimodal and the IV curve concave. To the contrary, as

time to expiry increases, the effect of the diffusion component dominates the effect of the

anticipated price jump, the RND reverts to unimodality, and the IV curve becomes convex.

Finally, while our focus is on the shape of the entire IV curve extracted from short-expiry

options, Figure 4 also shows that ATM IV is downward sloping prior to EADs, consistent

with the findings of DJKS (2019).

3.2 Determinants of Concave IV Curves

We next examine how concave IV curves are related to a number of firm characteristics prior

to EADs. Specifically, we run logistic regressions of CONCAVE on sets of contemporane-

ously measured variables. This constitutes a more formal analysis relative to the pairwise

correlations reported in Table 2, allowing us to simultaneously consider multiple variables

and to test for the statistical significance of these relationships. Table 4 presents the corre-

sponding results. We report z-statistics based on two-way clustered standard errors, at the

quarter- and firm-level. This choice is motivated by the arguments of Petersen (2009) and

the potential concern that the innovations of the utilized variables may be strongly correlated

across quarters and across firms. All models include BETA, LN(SIZE), B/M, LEVERAGE,

as well as EXPIRY and STRIKES.

The estimates of Model (1) show that IV curves extracted from options with shorter

expiry and larger number of strikes are significantly more likely to be concave. Moreover,

firms that are relatively smaller and less leveraged are also more likely to exhibit a concave

IV curve prior to the EAD. Model (2) adds several return-based characteristics. The main

finding is that a higher level of IVOL is significantly associated with a concave IV curve.

Model (3) includes a number of option-based variables. We find that a concave IV

curve is more likely to be observed as ATMIV increases and as RVIV decreases.7 We

6Data on short-expiry equity options are sparsely available prior to 2013, offering a practical reason why
this feature has not been documented in the prior literature.

7TSIV is almost perfectly positively correlated with ATMIV, and hence they cannot be both included
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also find that the probability of observing a concave IV curve significantly increases with

higher values of RNS and lower values of RNK. The latter findings are consistent with the

observation that concave IV curves reflect bimodal RNDs, as illustrated in the right Panel

of Figure 4. Bimodality in the central part of the RND typically yields a more symmetric

and less leptokurtic distribution, as compared to the commonly observed negatively skewed

and/or fat-tailed RNDs, which correspond to convex IV curves.

Model (4) includes firm characteristics that are considered to be proxies of fundamental

uncertainty with respect to the forthcoming earnings announcement. Notably, we find that

a concave IV curve more likely arises as the number of analysts following the firm increases.

Last, Model (5) considers stock and option-to-stock trading activity. We report that a higher

O/S value prior to the EAD is a significant determinant of concave IV curves.

Despite the highly significant contemporaneous relationship between CONCAVE and

a number of firm characteristics, none of the reported models yields a very high pseudo

R-squared. This feature further alleviates the potential concern that CONCAVE may be

simply mimicking existing firm characteristics or their combinations.

4 The Model

Motivated by the empirical findings in the previous section, we build an option pricing model

that can generate the novel features that we document, namely concavity in the IV curve

and bimodality in the RND of the underlying stock price prior to the EAD. The model

builds upon the continuous-time model of Bates (1996), which features stochastic volatility

and random jumps. We note that it is straightforward to generalize our modeling structure

using more complicated continuous-time stochastic volatility models.

The most usual modeling assumption for large stock price changes is that of a low-

probability, randomly timed Poisson jump (see, for example, Ball and Torous (1985) and

Merton (1976)). While random jumps, for example, can lead to an IV smirk and a left-tailed

RND, capturing tail risk and explaining the expensiveness of OTM puts (Bates (1996, 2000),

Pan (2002), and Yan (2011)), neither these jumps nor stochastic volatility typically generate

concave IV curves.

DJKS (2019) and Piazzesi (2000) introduce deterministically timed jumps in the continuous-

time path of the underlying stock price. Our model builds upon their insights. Let Nd
t count

EADs prior to time t so that Nd
t =

∑
j 1τj≤t, where τj is an increasing sequence of predictable

in a regression model. Nevertheless, we have alternatively included TSIV instead of ATMIV in Model (3).
The results confirm that a concave IV curve is more likely to appear as TSIV takes higher values.
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stopping times representing an EAD. Different from DJKS (2019), the jump size occuring on

EAD τj, Zj = ln
(
Sτj/Sτj−

)
, is assumed to follow a mixture of normal distributions. Specifi-

cally, Zj = πjX
(−)
j +(1−πj)X(+)

j , where πj is a Bernoulli distribution with P (πj = 1) = pj and

P (πj = 0) = 1− pj, X(−)
j

∣∣Fτj− ∼ N

(
µ

(−)
j ,
(
σ

(−)
j

)2
)

and X
(+)
j

∣∣∣Fτj− ∼ N

(
µ

(+)
j ,
(
σ

(+)
j

)2
)

.

This parsimonious modeling stucture introduces event risk, which is captured by the an-

ticipated upside and downside jumps, in the continuous-time stochastic volatility model. It

implies that on EAD, the stock price will exhibit either a “negative” jumpX
(−)
j with probabil-

ity pj or a “positive” one X
(+)
j with probability 1−pj. Since EADs are predictably timed, the

martingale restriction (see Piazzesi (2000)) requires that E
[
Sτj
∣∣Fτj− ] = Sτj−, imposing the

following restriction upon the parameters of the Zj distribution: pj exp

(
µ

(−)
j + 1

2

(
σ

(−)
j

)2
)

+

(1− pj) exp

(
µ

(+)
j + 1

2

(
σ

(+)
j

)2
)

= 1.

According to our model, under the risk-neutral measure Q, the stock price and variance

processes solve the following stochastic differential equations:

dSt = (r − λJµJ)Stdt+
√
VtStdW

S
t + d

 Nd
t∑

j=1

Sτj−
(
eZj − 1

)+ d

(
Nt∑
j=1

Sτ j−

(
eZj − 1

))
dVt = κv (θv − Vt) dt+ σv

√
VtdW

v
t , (3)

where r is the risk-free rate and W S
t , W v

t are two standard Brownian motions with correlation

ρdt. Price jumps may also occur at random times τ j according to a Poisson process Nt with

intensity parameter λJ and jump size Zj that is normally distributed, i.e., Zj

∣∣Fτ j− ∼
N (µJ , σ

2
J); µJ denotes the random jump compensator given by µJ = exp

(
µJ + 1

2
σ2
J

)
− 1.

Finally, θv is the long-run mean of variance, κv determines the mean-reversion rate and σv

is the volatility-of-volatility parameter.

Note that if pj = 1, the model collapses to the one of DJKS (2019). However, in this case,

the martingale restriction on Zj implies that µ
(−)
j = −1

2

(
σ

(−)
j

)2

, and hence only a negative-

mean jump can occur on EAD. Thus, our model is more general, allowing us to capture

the impact of both upside and downside anticipated jumps on the stock price process. In

the absence of EADs prior to time t (i.e., Nd
t = 0), the model collapses to the one of Bates

(1996).

The model specified in equation (3) generates a conditional probability density function

(pdf) for the log-return of the underlying stock that is a mixture of three constituent pdfs.

The first one is derived by the diffusion and random jumps component of the model. The

second and third pdfs are those of the two normally distributed upside and downside jumps
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that are anticipated to occur on EAD. The mixture of these three pdfs can generate a

plethora of different distributions. These include asymmetric distributions, distributions

with fat tails and most importantly for our analysis, multi-modal distributions. To this

end, this parametric model is sufficiently flexible to reproduce RNDs that prior studies have

empirically recovered from option prices by fitting mixtures of lognormal distributions or

smoothing splines in the IV space (see, for example, Birru and Figlewski (2012), Hanke,

Poulson, and Weissensteiner (2018), Leahy and Thomas (1996), Melick and Thomas (1997),

Mirkov, Pozdeev, and Söderlind (2016)).

The proposed model captures the increase in IV in the run up to the earnings announce-

ment and its sharp fall right after (Patell and Wolfson, 1979, 1981). In addition, similar to

DJKS (2019), the model can generate a downward sloping IV term structure prior to sched-

uled announcements due to the anticipated price jump. Different from the prior literature,

however, the model can also generate concave IV curves and bimodal RNDs, revealing the

pricing of event risk. Hence, it disentangles the effect of a scheduled event on the overall

level of IV from the corresponding effects across different levels of moneyness. As a result,

the model can provide estimates of the probability, direction, expected magnitude and dis-

persion of price jumps that are anticipated to occur. This rich set of information can help

us infer investor expectations regarding the impending event as well as the pricing of the

arising event risk.

In our model, the stock price is defined by the product of an affine component and a

discrete jump on EADs. Therefore, option pricing proceeds in a similar fashion to standard

affine models, using the closed-form solution of the conditional characteristic function of the

log stock price (see, Duffie, Pan, and Singleton (2000) and Bates (1996)). The characteristic

function is presented in Appendix B.

Full-scale estimation of the proposed model is not the main goal of our paper. Never-

theless, to showcase the ability of the model to generate concave IV curves and bimodal

RNDs prior to EADs, we consider the example of Apple on October 28, 2013. Recall that in

this case, a single EAD occurs prior to option expiry. The corresponding empirical IV curve

derived from fitting a quintic spline to the actual IVs is illustrated in Panel A of Figure 2.

Here, we fit our model to the actual option prices by minimizing the root mean squared error

(RMSE) between the actual and the model-implied IVs. The parameter values that mini-

mize the RMSE are: θv = 0.42, κv = 2.44, σv = 4.74, ρ = −0.01, λJ = 14.5, µJ = −0.007,

σJ = 0.078, pj = 0.444, µ
(−)
j = −0.056, σ

(−)
j = 0.006, µ

(+)
j = 0.043, σ

(+)
j = 0.007. Apart from

pronounced stochastic volatility and a random price jump whose size has a small mean but

is rather disperse, these parameter values indicate that investors anticipate with risk-neutral

probability 44.4% (55.6%), a downside (upside) price jump on EAD with mean size -5.6%
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(4.3%) and low volatility.

Figure 6 shows that these parameter values generate a W-shape IV curve that fits ex-

tremely well the actual IVs. We repeat the same process fitting the DJKS (2019) model to

the actual option prices. As illustrated in Figure 6, the latter model yields a poor fit because

it cannot generate concavity in the IV curve.

Figure 7 presents the RND for Apple’s log stock return on October 28, 2013. This RND

is derived from call option prices implied by our model for the parameter values estimated

above. It is evident that our model gives rise to a bimodal RND, which is very similar to

the RND corresponding to the empirical IV curve presented in Panel A of Figure 2.

5 Implications of Concave IV Curves

5.1 Absolute Stock Returns on EAD

We now turn our focus on the informational content of CONCAVE. We first examine whether

concave IV curves can predict higher or lower absolute stock returns on EAD relative to

non-concave IV curves. To ensure that our results are not affected by market-wide price

movements or systematic factor-related returns, we use the absolute abnormal stock return

on EAD (ABSEADABRET ) with respect to the Fama-French-Carhart (FFC) 4-factor model.

Specifically, we compute the abnormal stock return on EAD as the realized minus the

expected return. The expected return is calculated on the basis of pre-estimated factor

loadings for each firm. For this estimation, we use daily returns from d−250 to d−25, where

d is the EAD, requiring at least 200 observations. This choice ensures that the estimated

factor loadings are not affected by stock returns observed in the runup to the EAD.

The summary statistics reported in Table 1 show that the average value of ABSEADABRET

is 4.84%, whereas the median value is 3.42%. These statistics are consistent with the finding

in prior literature that stock prices often exhibit very large movements around earnings an-

nouncements (see Kapadia and Zekhnini (2019), Lee (2012), and Lee and Mykland (2008)).

This feature becomes even more striking if one takes into account that our sample consists

of very big capitalization firms.

Table 5 presents estimates from panel regressions of ABSEADABRET on CONCAVE

plus a number of firm characteristics measured on the day prior to the EAD.8 Models (1),

8After March 5, 2008, OptionMetrics records bid and ask option prices at 15:59 EST. This ensures that
the criticism of Battalio and Schulz (2006) on non-synchronicity bias does not apply during our sample
period.
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(3), and (5) report t-statistics based on two-way clustered standard errors, at the firm- and

quarter-level. Models (2), (4), and (6) include quarterly fixed effects to ensure that our

results are not purely driven by specific quarters in our sample period.

Overall, the results in Table 5 show that concave IV curves observed prior to EADs

predict significantly higher ABSEADABRET values. Column (1) shows that, on average,

concave IV curves are followed by a 1.8% (t-statistic = 5.63) higher absolute abnormal stock

return on EAD relative to non-concave IV curves. On average, the latter are followed by a

4.16% ABSEADABRET, whereas concave IV curves are, on average, followed by a 5.96%

ABSEADABRET. This highly significant return differential remains intact when we account

for quarterly fixed effects in column (2), confirming that it is not driven by specific quarters

in our sample period. Moreover, this differential remains significant when we additionally

control in columns (3)-(6) for a number of firm characteristics that may be related to future

stock returns.9

One interpretation of this predictive relationship is that investors are able to ex-ante iden-

tify earnings announcements where larger than average stock price movements are observed,

and they trade accordingly in the option market. On these occasions, IV curves become

concave and the corresponding RNDs for the underlying stock price become clearly bimodal,

indicating that a very large stock price movement is likely to be observed on EAD. In fact, the

occurrence of larger than average absolute stock returns upon these announcements verifies

the informational content of CONCAVE.

5.2 Post-EAD Stock Return Volatility

Next, we examine the informational content of CONCAVE with respect to the post-EAD

stock return volatility (POSTEADVOL). To this end, we compute the (annualized) 10-day

stock return volatility from d to d+ 9, according to the standard formula:

POSTEADV OL =

√√√√252

10

d+9∑
t=d

r2
t , (4)

where rt is the daily log-return.

Whereas POSTEADVOL is naturally affected by the magnitude of ABSEADABRET, it

is conceptually different from the latter because it also captures the stock price fluctuations

occurring after the EAD. We opt for a 10-day measurement window in our benchmark

9Unreported results, which are available upon request, yield very similar conclusions when we alternatively
use gross, rather than abnormal, absolute stock returns on EAD.

17



results to be consistent with the range of expirations observed in our option sample. We

have repeated the subsequent analysis using alternatively the 5-day and the 21-day post-

EAD stock return volatility as dependent variable. The results are very similar to the ones

presented in Table 6 and they are readily available upon request.

The mean (median) value of POSTEADVOL reported in Table 1 is 38.97% (31.47%) p.a..

Even though we mainly include large capitalization stocks in our sample, we still find that

their returns exhibit a high degree of volatility in the 10-day interval right after the earnings

announcement.

Table 6 presents estimates from panel regressions of POSTEADVOL on CONCAVE plus

a number of firm characteristics measured on the day prior to the EAD. We find that CON-

CAVE possesses significant predictive ability over POSTEADVOL too. Column (1) indicates

that concave IV curves are followed by an average POSTEADVOL of 45.86% p.a., whereas

non-concave IV curves are followed by an average POSTEADVOL of 34.81% p.a., yielding

a highly significant differential of 11.05% p.a. (t-statistic = 5.35). Column (2) confirms that

this differential is not purely driven by volatility episodes in certain quarters. This predictive

relationship remains significant when we additionally control in columns (3)-(6) for a number

of firm characteristics that may also be related to stock return volatility.

The reported predictive ability of CONCAVE indicates that investors can identify the

announcements that cause a significant increase in post-EAD volatility. As a consequence,

they trade in the option market to hedge against or to speculate on this feature, determining

prices that correspond to a bimodal RND for the underlying stock return. In turn, an

RND that features bimodality in its central part implies, ceteris paribus, a higher degree

of variance over the remaining life of the options. Hence, observing higher than average

POSTEADVOL for concave IV curves verifies the informational content of CONCAVE.

5.3 Straddle Returns Around EADs

Having established that concave IV curves are typically associated with significantly higher

absolute stock returns on EADs and post-EAD realized volatility, as compared to non-

concave IV curves, we further examine the behavior of straddle returns around EADs. An-

ticipating these stock return characteristics, investors could take long positions in ATM

straddles to either speculate on or hedge against these large price swings regardless of their

direction. In fact, delta-neutral ATM straddle returns have been used to measure the price of

volatility risk for the underlying stock returns (see e.g., Coval and Shumway (2001), Bakshi

and Kapadia (2003)).
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We compute the returns of delta-neutral ATM straddles (STRADDLE ) on EAD. Similar

to prior literature, we use the nearest-to-the-money pair of call and put options within the

moneyness (K/S) range of 0.98–1.02. We buy the straddle at the close of the trading day

prior to the EAD and we sell it at the close after the announcement. We use the shortest

available options, requiring that they have at least three days to expiry when we close the

position. The return of the delta-neutral straddle on EAD is given by:

rstraddle = wcrc + (1− wc)rp, (5)

where rc (rp) is the return of the call (put) option on EAD. The weight wc is given by:

wc = − ∆PUT/PUT

∆CALL/CALL−∆PUT/PUT
, (6)

where ∆CALL (∆PUT ) is the delta of the call (put) provided by OptionMetrics and CALL

(PUT ) is the corresponding call (put) price at straddle formation. This weight ensures that

the straddle is delta-neutral at formation.

The summary statistics reported in Table 1 show that the median STRADDLE value on

EAD is −14.35%. This finding provides support for the argument that investors most often

pay a substantial price to be hedged against the increased volatility and large stock price

swings observed around EADs. However, it should be noted that STRADDLE exhibits a

positively skewed distribution in our sample and its average value is 0.25%.

Table 7 presents estimates from predictive panel regressions of STRADDLE on CON-

CAVE as well as a number of firm characteristics measured on the day prior to the EAD.10

Models (1), (3), and (5) use two-way clustered standard errors, whereas Models (2), (4), and

(6) add quarterly fixed effects. We also control for the expiry and the average moneyness of

the pair of options used to construct this straddle strategy, ensuring that our results are not

driven by these features.

Overall, we find that, ceteris paribus, concave IV curves predict a significantly lower strad-

dle return on EAD. In particular, column (1) shows that concave IV curves are followed by

a 6.17% (t-statistic = −2.88) lower average straddle return, as compared to non-concave IV

curves. Column (2) shows that the economic and statistical significance of this finding is

not driven by specific quarters in our sample period. Furthermore, this predictive relation-

ship remains intact when we additionally control in columns (3)-(6) for a number of firm

10We have repeated the analysis reported in Table 7 using simple instead of delta-neutral ATM straddle
returns. The results, which are readily available upon request, are very similar to the ones reported in
Table 7.
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characteristics that may be related to volatility, and hence the observed straddle returns.

The main conclusion from this analysis is that when IV curves become concave, investors

most often pay a substantially higher premium to hedge against the larger than average stock

price swings that are typically observed on these EADs. In fact, the median STRADDLE

value is −17.19% when CONCAVE= 1 and −13.03% when CONCAVE= 0. In other words,

even though larger than average stock price movements occur on EADs following the forma-

tion of concave IV curves, these price swings are not large enough to offset the substantial

cost of purchasing straddles on these occasions. As a corollary, whereas it is known to be

typically profitable to write straddles at the firm level (see Gao et al. (2018), DJKS (2019)),

we document that it is highly profitable to do so when concave IV curves are observed prior

to EADs.

To provide direct evidence that ATM straddles are particularly costly in the presence of

concave IV curves, we introduce an intuitive measure of their expensiveness. Specifically, we

calculate the following ratio:

IMPMOV E =
CALL+ PUT

STOCK
, (7)

where, as above, CALL (PUT ) is the ATM call (put) price at straddle formation, i.e., on

the day prior to EAD, and STOCK is the corresponding price of the underlying stock.

This measure roughly indicates how much the underlying stock price should move in either

direction to offset the cost of a symmetric ATM straddle, and hence it is termed as the

implied stock price move (IMPMOVE ). The higher (lower) the value of IMPMOVE, the

more (less) expensive it is to purchase an ATM straddle, ceteris paribus.

To construct this measure, we use the same pair of nearest-to-the-money call and put

options that we used above to construct the delta-neutral straddle. The summary statistics

reported in Table 1 indicate an average (median) IMPMOVE value of 6.22% (5.27%). Taking

into account that we utilize very short-expiry options, these statistics indicate that ATM

straddles are quite expensive prior to EADs, as they require a substantial stock price move

in either direction to offset their cost.

Table 8 presents estimates from contemporaneous panel regressions of IMPMOVE on

CONCAVE and a number of firm characteristics measured on the day prior to EAD. Models

(1), (3), and (5) use two-way clustered standard errors, whereas Models (2), (4), and (6) add

quarterly fixed effects. In unreported results, we have additionally controlled for the expiry

and the average moneyness of the pair of options used to compute IMPMOVE ; the results

are very similar to the ones presented in Table 8.
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Overall, we find very strong evidence that ATM straddles are much more expensive in the

presence of concave IV curves. Specifically, column (1) indicates that, on average, concave

IV curves are associated with a 2.31% (t-statistic = 7.79) higher IMPMOVE relative to

non-concave IV curves. The average value of IMPMOVE is 7.67% when CONCAVE= 1 and

5.46% when CONCAVE= 0. This significant differential is not subsumed when we control

for quarterly fixed effects or additional firm characteristics in columns (2)-(6).

These findings provide direct evidence that in the presence of concave IV curves, the

underlying stock price should exhibit a substantially larger move after the announcement, in

either direction, to offset the cost of purchasing the ATM straddle prior to the EAD. This

evidence rationalizes why despite the larger than average absolute stock returns realized

on EADs following the formation of concave IV curves, the corresponding straddle returns

are still much lower relative to non-concave IV curves. This is because these straddles are

substantially more expensive to purchase in the first place, and hence the realized price

jumps on EADs are not sufficient to offset their cost.

The significantly higher cost of buying ATM straddles in the presence of concave IV

curves provides an alternative way to illustrate that investors pay a significantly higher

price to hedge against the event risk that arises on these occasions due to the impending

announcement. This evidence further corroborates the argument that concave IV curves

provide an ex-ante signal of event risk. Based on these findings, we conclude that investors

can ex-ante identify the announcements that trigger large stock price moves and they pay

a substantially higher premium to hedge against them, most obviously by purchasing ATM

straddles. As a result of this hedging activity, the corresponding ATM options become very

expensive, trading at higher volatility, and hence the corresponding IV curves turn concave

prior to EADs.

6 Conclusions

This study documents, for the first time in the literature, that the IV curves of equity options

frequently exhibit concavity prior to the EAD. This shape is in stark contrast with the convex

volatility smiles or smirks that are commonly observed for equity options. Concavity is most

obvious in short-expiry options, it reflects a bimodal RND for the underlying stock price,

and quickly disappears after the announcement, as the uncertainty surrounding this event is

resolved.

This feature has far reaching implications for our understanding of the behavior of stock

prices, the pricing of earnings risk and the informational content of option prices. We report
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significant evidence that firms with concave IV curves exhibit higher absolute abnormal stock

returns on EAD and higher realized volatility after the announcement. Despite the larger

than average stock price moves on EAD following the formation of concave IV curves, we

still find that the corresponding delta-neutral straddle returns are significantly lower than

for non-concave IV curves. To rationalise this finding, we provide strong evidence that ATM

straddles are significantly more expensive in the presence of concave IV curves, and hence the

realized stock price jumps are not sufficient to offset the substantial cost of these straddles.

Overall, we show that investors can ex-ante identify the announcements that trigger larger

than average stock price moves and they pay a substantially higher premium to hedge against

this event risk. This hedging activity impacts on option prices, leading to the formation of

a concave IV curve. To this end, we conclude that concavity in the IV curve constitutes

an ex-ante option-implied signal for event risk in the underlying stock arising due to the

impending announcement.

The focus of our study is on scheduled corporate earnings announcements. However, it

would be interesting to examine the features and the informational content of IV curves

around other, non-corporate events that may also trigger large asset price moves. Prior

studies have argued that macroeconomic announcements and geopolitical events can give

rise to substantial event risk, which can be ex-ante reflected in option prices (see Savor and

Wilson (2013), Leahy and Thomas (1996), Melick and Thomas (1997), Kelly et al., (2015),

Hanke et al. (2018)). We anticipate that the curvature properties of the IV curve around

these events can reveal substantial information with respect to the pricing of event risk and

the subsequent behavior of asset prices.
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Appendix A: Definition of Variables

ANNBETA: Following Barth and So (2014), announcement beta is the estimate of coef-
ficient β3 from the following firm-level regression model:

xri,t = αi + β1,iMKTt + β2,iAnnDayi,t + β3,i(MKTt × AnnDayi,t) + εi,t, (A1)

where xri,t is the excess daily return of stock i on day t, MKT denotes the excess market
return, and AnnDayi,t is a dummy variable that takes the value 1 on trading days (d −
1, d, d + 1), where d is the EAD, and 0 otherwise. We estimate this model using daily data
during the past 12 quarters. We require at least 8 EADs and at least 451 observations.

ATMIV : The average of the annualized call implied volatility with ∆CALL = 0.5 and
the annualized put implied volatility with ∆PUT = −0.5. Annualized implied volatilities are
sourced from the 10-day Volatility Surface File of OptionMetrics.

B/M : The ratio of firm book value of equity (CEQ) to market capitalization. Market
capitalization is defined as the product of share price (PRC) times the number of shares
outstanding (SHROUT). We drop observations with negative book value. We use the B/M
ratio computed at the end of the previous fiscal quarter.

BETA: The market beta estimated from the FFC 4-factor regression model. We estimate
this model at t using daily data from t−250 to t−25 and requiring at least 200 observations.
MKT , SMB, HML, and WML returns are sourced from Kenneth French’s online data
library.

DISPERSION : The standard deviation of the earnings per share (EPS) forecasts for
the next quarterly earnings announcement scaled by the absolute value of the mean EPS
forecast. EPS forecasts are sourced from I/B/E/S.

IVOL: The firm-level annualized standard deviation of residuals from the FFC 4-factor
regression model. We estimate this model at t using daily data from t − 250 to t − 25 and
requiring at least 200 observations.

LEVERAGE : The ratio of total liabilities (LT) to the sum of market capitalization and
total liabilities. Market capitalization is defined as the product of share price (PRC) times
the number of shares outstanding (SHROUT). We use the LEVERAGE ratio computed at
the end of the previous fiscal quarter.

LN(PRICE): The natural logarithm of the share price (PRC).

LN(SIZE): The natural logarithm of the firm’s market capitalization (in million $). Mar-
ket capitalization is defined as the product of share price (PRC) times the number of shares
outstanding (SHROUT). We use the market capitalization computed at the end of the pre-
vious fiscal quarter.

MOM : The cumulative stock return from day t− 250 to day t− 25. We require at least
200 daily observations.

NUMEST : The number of analysts providing EPS forecasts for the next quarterly earn-
ings announcement sourced from I/B/E/S.

O/S : The ratio of daily option trading volume to daily stock trading volume. Option
trading volume is multiplied by 100, as each option contract corresponds to a 100-share lot.
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We sum up the trading volume of all call and put options with the same expiry as the one
used to define the indicator CONCAVE.

RVIV : The difference between the annualized realized (historical) volatility and the at-
the-money implied volatility (ATMIV ). Realized volatility is sourced from the 10-day His-
torical Volatility File provided by OptionMetrics.

RUNUP : The cumulative stock return from day t − 4 to day t. We require all 5 daily
observations.

RNK : The Risk-Neutral Kurtosis computed as per the definition of Bakshi et al. (2003).
We use prices of OTM and ATM options with the same expiry as the one used to define the
indicator CONCAVE. We require at least 4 options, with at least 2 calls and 2 puts. Option
prices are converted to implied volatilities and vice versa via the Black-Scholes formula.
We use a cubic spline to interpolate implied volatilities between the lowest and the highest
available strikes and perform a constant extrapolation outside this range, with lower bound
K/S = 1/3 and upper bound K/S = 3.

RNS : The Risk-Neutral Skewness computed as per the definition of Bakshi et al. (2003).
We use prices of OTM and ATM options with the same expiry as the one used to define the
indicator CONCAVE. We require at least 4 options, with at least 2 calls and 2 puts. Option
prices are converted to implied volatilities and vice versa via the Black-Scholes formula.
We use a cubic spline to interpolate implied volatilities between the lowest and the highest
available strikes and perform a constant extrapolation outside this range, with lower bound
K/S = 1/3 and upper bound K/S = 3.

STOCKTR: The ratio of daily stock trading volume to shares outstanding.

TSIV : The term structure estimator of ATM implied volatility proposed by DJKS (2019)
and defined as the square root of the following expression:(

σQi,term

)2

=
σ2
t,T1
− σ2

t,T2

T−1
1 − T−1

2

, (A2)

where σ2
t,T1

is the squared annualized ATM implied volatility corresponding to the nearest
expiry T1 and σ2

t,T2
is the squared annualized ATM implied volatility corresponding to the

second nearest expiry T2. T1 is the same as the maturity of the options used to define the
indicator CONCAVE. We use the nearest-to-the-money option to compute the ATM implied
volatility, with moneyness defined as the strike price divided by the forward price. TSIV is
not defined when σ2

t,T1
< σ2

t,T2
.
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Appendix B: Characteristic Function

Let ϕ(u; t, T, St, Vt) with u ∈ R be the characteristic function of logST conditional on Ft
under risk-neutral measure Q. According to our model, the log stock price is the sum
of two independent components. The first component is an affine process for which the
characteristic function, denoted as ϕaf (u; t, T, St, Vt), is known in closed-form (see Bates
(1996)) and it is given by:

ϕaf (u; t, T, St, Vt) = exp (iu lnSt + α(u; t, T ) + β(u; t, T )Vt) , (B1)

where

α(u; t, T ) = (r − λJµJ) τiu+
κvθv
σ2
v

(
q1τ − 2 log

(
1− ge∆τ

1− g

))
+λJτ ((1 + µJ)iu e

σ2J
2
iu(iu−1)−1),

(B2)

β(u; t, T ) =
q1

σ2
v

(
1− e∆τ

1− ge∆τ

)
, (B3)

with τ = T−t, ∆ =
√

(κv − ρσviu)2 − 2σ2
viu(iu− 1), q1 = κv−ρσviu+∆, q2 = κv−ρσviu−∆

and g = q1/q2.

The second component is a discrete process with independent deterministic jumps at
known times. Its characteristic function, also known in closed-form, is given by:

ϕdis(u; t, T ) =

Nd
T∏

j=Nd
t +1

ϕj(u), (B4)

where
ϕj(u) = pjM

(−)
j (u) + (1− pj)M (+)

j (u), (B5)

where M
(−)
j (u) = exp

(
iuµ

(−)
j + (iu)2

2

(
σ

(−)
j

)2
)

and M
(+)
j (u) = exp

(
iuµ

(+)
j + (iu)2

2

(
σ

(+)
j

)2
)

.

As the two components are independent, ϕ(u; t, T, St, Vt) is given by the product of the
characteristic functions (B1) and (B4):

ϕ(u; t, T, St, Vt) = ϕaf (u; t, T, St, Vt)ϕdis(u; t, T ). (B6)

Knowledge of the characteristic function of the log stock price in closed-form enables us
to price options. In particular, the price at time t of a European call option with strike price
K and expiry T , denoted as Ct(K,T ), is given by (see Heston and Nandi (2000)):

Ct(K,T ) =
1

2
St +

e−r(t−t)

π

∫ ∞
0

Re

[
K−iuϕ(u− i; t, T, St, Vt)

iu

]
du

−Ke−r(T−t)
(

1

2
+

1

π

∫ ∞
0

Re

[
K−iuϕ(u; t, T, St, Vt)

iu

]
du

)
. (B7)
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Figure 2: Concave IV curves around EAD
This figure illustrates how a concave IV curve prior to the EAD becomes convex after the an-
nouncement. Panel A presents a concave IV curve for Apple, computed from options with 4 days
to expiry on October 28, 2013, i.e., prior to its quarterly earnings announcement. Panel B presents
a convex IV curve for the same firm, computed from options with 3 days to expiry on October 29,
2013, i.e., right after the announcement.

Panel A: Prior to EAD

Panel B: After the announcement
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Figure 3: Fraction of concave IV curves around EAD
This figure shows the fraction of firms exhibiting a concave IV curve on each trading day from d-5
to d+5, where d is the quarterly EAD. The definition of a concave IV curve is provided in Section
2.2. IV curves are computed for the 100 firms with the highest option trading activity per year
during the period 2013-2019.
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Figure 5: IV curves for short- vs. longer-expiry options
This figure shows the shape of IV curves for Amazon, computed from options with different ex-
piries (8, 22, 36, and 50 days to expiry) on April 26, 2018, i.e., just before its quarterly earnings
announcement. The IV curves are fitted using a quintic spline.
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Figure 6: Model-implied IV curve
This figure shows the fit of the model-implied IV curve (solid curve) relative to the actual IVs
(circles). Actual IVs are computed for Apple from options with 4 days to expiry on October 28,
2013, i.e., prior to its quarterly earnings announcement. The model-implied IV curve is computed
using the corresponding estimated parameter values for the model specified in Section 4. Model
parameter values are estimated by minimizing the RMSE between the actual and the model-implied
IVs. The Figure also shows the corresponding IV curve (dashed curve) implied by fitting the DJKS
(2019) model to the actual IVs.

35



Figure 7: Model-implied RND
This figure shows the empirical RND (solid curve) together with the model-implied RND (dashed
curve) for Apple’s log stock return, derived from options with 4 days to expiry on October 28, 2013,
i.e., prior to its quarterly earnings announcement. The empirical RND corresponds to the empirical
IV curve, which is derived from fitting a quintic spline to the actual IVs. The model-implied RND
is computed using the corresponding estimated parameter values for the model specified in Section
4. Model parameter values are estimated by minimizing the RMSE between the actual and the
model-implied IVs.
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Table 1: Summary statistics
This table presents summary statistics for selected variables. CONCAVE is an indicator variable
that takes the value one when the IV curve is concave on the day prior to the EAD and zero
otherwise. ABSEADABRET is the absolute abnormal stock return on EAD, measured with respect
to the 4-factor FFC model. POSTEADVOL is the 10-day post-EAD annualized realized stock
return volatility. STRADDLE denotes the return of the delta-neutral ATM straddle strategy on
EAD. IMPMOVE denotes the ratio of the sum of the ATM put and call prices divided by the
underlying stock price. The definition of the rest of the variables is provided in Appendix A.
These summary statistics are based on the values of the variables measured on the day prior to the
EAD and they are computed for a sample of quarterly earnings announcements during the period
2013-2019.

Variable Mean St. Dev. 25th pctl Median 75th pctl Obs.

CONCAVE 0.374 0.48 0 0 1 1,875
EXPIRY 6.47 2.61 4 8 9 1,875
STRIKES 16.72 11.83 9 13 20 1,875
BETA 1.09 0.31 0.90 1.09 1.28 1,842
LN(SIZE) 10.94 1.30 10.08 11.10 11.97 1,867
B/M 0.35 0.32 0.13 0.26 0.45 1,760
LEVERAGE 0.34 0.24 0.16 0.27 0.49 1,809
RUNUP 0.43 3.84 −1.71 0.53 2.56 1,875
MOM 17.92 40.92 −5.49 12.03 32.12 1,842
IVOL 24.17 12.35 15.20 20.55 29.62 1,842
LN(PRICE) 4.33 0.90 3.76 4.21 4.77 1,875
ATMIV 42.31 20.28 28.13 35.77 51.53 1,825
RNS −0.28 0.24 −0.43 −0.26 −0.12 1,875
RNK 3.51 0.45 3.22 3.42 3.70 1,875
RVIV −16.68 14.30 −23.08 −14.74 −7.67 1,825
TSIV 6.58 3.66 3.87 5.50 8.35 1,867
NUMEST 24.32 7.58 19 24 30 1,867
DISPERSION 12.46 25.80 2.43 4.43 9.95 1,860
ANNBETA 0.08 0.80 −0.31 0.06 0.49 1,801
STOCKTR 2.27 2.88 0.65 1.14 2.57 1,875
O/S 27.09 31.69 5.64 15.11 35.35 1,875
ABSEADABRET 4.84 4.64 1.58 3.42 6.44 1,842
POSTEADVOL 38.97 25.28 21.77 31.47 48.31 1,872
STRADDLE 0.25 50.21 −33.93 −14.35 20.30 1,862
IMPMOVE 6.22 3.16 3.96 5.27 7.74 1,863
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Table 3: Characteristics of firms with concave vs. non-concave IV curves
This table presents the average values of selected variables for firms when they exhibit a concave IV
curve on the day prior to the EAD (CONCAVE=1) versus the corresponding average values when
they do not exhibit a concave IV curve (CONCAVE=0). The definition of the rest of the variables is
provided in Appendix A. The values of the variables are measured on the day prior to the EAD and
they are computed for a sample of quarterly earnings announcements during the period 2013-2019.
The last column contains the difference in the average values with the corresponding t-statistic
(under the null hypothesis of equal means) in parenthesis.

Variable CONCAVE=1 CONCAVE=0 Difference

EXPIRY 6.08 6.71 −0.63 (−5.05)
STRIKES 21.30 13.98 7.31 (12.22)
BETA 1.13 1.07 0.06 (3.72)
LN(SIZE) 10.64 11.12 −0.48 (−7.50)
B/M 0.30 0.38 −0.09 (−5.77)
LEVERAGE 0.27 0.38 −0.10 (−9.59)
RUNUP 0.68 0.27 0.41 (2.18)
MOM 23.77 14.50 9.27 (4.35)
IVOL 28.55 21.61 6.94 (11.47)
LN(PRICE) 4.44 4.26 0.18 (3.79)
ATMIV 51.19 37.02 14.16 (14.59)
RNS −0.15 −0.36 0.20 (21.07)
RNK 3.26 3.66 −0.40 (−22.22)
RVIV −22.79 −13.05 −9.74 (−13.94)
TSIV 8.35 5.52 2.83 (16.69)
NUMEST 26.14 23.22 2.92 (7.85)
DISPERSION 13.73 11.71 2.03 (1.65)
ANNBETA 0.11 0.07 0.04 (1.03)
STOCKTR 3.21 1.71 1.49 (10.37)
O/S 37.75 20.71 17.04 (10.41)
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Table 4: Determinants of concave IV curves
This table presents the results of contemporaneous logistic regressions of CONCAVE on alternative
sets of firm characteristics. CONCAVE is an indicator variable that takes the value one when the
IV curve is concave on the day prior to the EAD and zero otherwise. The definition of the rest of
the variables is provided in Appendix A. The values of the variables are measured on the day prior
to the EAD and they are computed for a sample of quarterly earnings announcements during the
period 2013-2019. z-statistics are provided in parenthesis, using two-way clustered standard errors
at the firm- and quarter-level.

(1) (2) (3) (4) (5)

EXPIRY −0.110 −0.114 −0.118 −0.111 −0.028
(−3.47) (−3.63) (−3.62) (−3.79) (−0.76)

STRIKES 0.047 0.039 0.046 0.046 0.030
(4.96) (3.87) (5.57) (5.29) (3.00)

BETA 0.359 0.294 0.125 0.369 0.344
(1.65) (1.37) (0.74) (1.58) (1.49)

LN(SIZE) −0.317 −0.142 0.313 −0.409 −0.250
(−3.89) (−1.29) (3.31) (−5.06) (−2.48)

B/M 0.057 0.047 −0.362 −0.155 0.128
(0.16) (0.12) (−0.98) (−0.48) (0.35)

LEVERAGE −1.641 −1.472 0.201 −0.818 −1.659
(−3.10) (−2.86) (0.40) (−1.65) (−3.08)

RUNUP 1.147
(0.77)

MOM 0.045
(0.24)

IVOL 2.481
(2.42)

LN(PRICE) 0.021
(0.14)

ATMIV 2.629
(3.43)

RNS 4.077
(8.60)

RNK −2.222
(−5.74)

RVIV −1.592
(−2.81)

NUMEST 0.045
(4.42)

DISPERSION −0.299
(−1.27)

ANNBETA 0.056
(0.61)

STOCKTR 6.027
(1.26)

O/S 1.337
(3.34)

Constant 2.951 0.5 3.146 2.695 1.47
(2.94) (0.31) (1.54) (2.49) (1.14)

Observations 1,733 1,733 1,692 1,687 1,733
Pseudo R-squared 0.1241 0.1293 0.3239 0.1415 0.1388
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Table 5: Concave IV curves and absolute abnormal stock returns on EAD
This table presents results from predictive panel regressions of the absolute abnormal stock return
on EAD (ABSEADABRET) on CONCAVE and a set of firm-level characteristics measured on
the day prior to the EAD. The abnormal stock return is computed with respect to the 4-factor
FFC model. CONCAVE is an indicator variable that takes the value one when the IV curve is
concave on the day prior to the EAD and zero otherwise. The definition of the rest of the variables
is provided in Appendix A. The sample consists of quarterly earnings announcements during the
period 2013-2019. Models (1), (3), and (5), use two-way clustered standard errors, at the firm- and
quarter-level. Models (2), (4), and (6), include quarterly fixed effects. t-statistics are provided in
parenthesis.

(1) (2) (3) (4) (5) (6)

CONCAVE 0.0180 0.0190 0.0086 0.0090 0.0054 0.0054
(5.63) (8.56) (3.14) (4.15) (2.18) (2.47)

BETA 0.0028 0.0018 −0.0013 −0.0032
(0.76) (0.50) (−0.35) (−0.91)

LN(SIZE) −0.0156 −0.0157 −0.0156 −0.0160
(−9.80) (−17.09) (−10.59) (−16.84)

B/M −0.0187 −0.0172 −0.0137 −0.0117
(−3.60) (−4.91) (−2.88) (−3.38)

RUNUP 0.0341 0.0398 0.022 0.0293
(1.55) (1.48) (0.95) (1.11)

MOM −0.0003 0.0034 0.0003 0.0039
(−0.06) (1.25) (0.06) (1.44)

LN(PRICE) 0.0006 0.0006 −0.0003 −0.0004
(0.25) (0.41) (−0.13) (−0.33)

NUMEST 0.0010 0.0011
(4.28) (7.71)

DISPERSION 0.0114 0.0129
(1.67) (3.28)

ANNBETA 0.0033 0.0032
(1.94) (2.54)

Constant 0.0416 — 0.2168 — 0.1974 —
(16.55) (10.84) (10.49)

Fixed Effects No Quarter No Quarter No Quarter
Observations 1,837 1,837 1,733 1,733 1,687 1,687
R-squared 0.0352 0.0585 0.2185 0.2384 0.2352 0.257
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Table 6: Concave IV curves and 10-day post-EAD stock return volatility
This table presents results from predictive panel regressions of the post-EAD realized stock return
volatility (POSTEADVOL) on CONCAVE and a set of firm-level characteristics measured on the
day prior to the EAD. Post-EAD volatility is computed using stock returns from d to d+9, where d
is the EAD, and it is annualized. CONCAVE is an indicator variable that takes the value one when
the IV curve is concave on the day prior to the EAD and zero otherwise. The definition of the rest of
the variables is provided in Appendix A. The sample consists of quarterly earnings announcements
during the period 2013-2019. Models (1), (3), and (5), use two-way clustered standard errors, at
the firm- and quarter-level. Models (2), (4), and (6), include quarterly fixed effects. t-statistics are
provided in parenthesis.

(1) (2) (3) (4) (5) (6)

CONCAVE 0.1105 0.1177 0.0443 0.0465 0.0327 0.0312
(5.35) (9.97) (2.91) (4.54) (2.42) (3.06)

BETA 0.0798 0.0688 0.0682 0.0529
(3.60) (4.15) (3.14) (3.25)

LN(SIZE) −0.0953 −0.0979 −0.0906 −0.0952
(−11.17) (−22.62) (−11.51) (−21.35)

B/M −0.0853 −0.0690 −0.0627 −0.0437
(−3.73) (−4.17) (−2.97) (−2.69)

RUNUP −0.1671 −0.0237 −0.2351 −0.0712
(−1.24) (−0.19) (−1.48) (−0.57)

MOM 0.0303 0.0583 0.0298 0.0593
(1.48) (4.56) (1.37) (4.67)

LN(PRICE) −0.0031 −0.0038 −0.006 −0.0072
(−0.25) (−0.59) (−0.61) (−1.16)

NUMEST 0.0041 0.0045
(3.29) (6.81)

DISPERSION 0.0902 0.1008
(3.37) (5.50)

ANNBETA 0.007 0.0031
(0.94) (0.54)

Constant 0.3481 — 1.3612 — 1.2165 —
(18.94) (12.26) (11.79)

Fixed Effects No Quarter No Quarter No Quarter
Observations 1,867 1,867 1,730 1,730 1,684 1,684
R-squared 0.0449 0.0895 0.3289 0.3859 0.3335 0.3962
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Table 7: Concave IV curves and delta-neutral straddle returns on EAD
This table presents results from predictive panel regressions of delta-neutral ATM straddle returns
computed on EAD (STRADDLE) on CONCAVE and a set of firm-level characteristics measured on
the day prior to the EAD. CONCAVE is an indicator variable that takes the value one when the IV
curve is concave on the day prior to the EAD and zero otherwise. The definition of the rest of the
variables is provided in Appendix A. Option controls include the expiry and the average moneyness
of the options used to construct the straddle strategy. The sample consists of quarterly earnings
announcements during the period 2013-2019. Models (1), (3), and (5), use two-way clustered
standard errors, at the firm- and quarter-level. Models (2), (4), and (6), include quarterly fixed
effects. t-statistics are provided in parenthesis.

(1) (2) (3) (4) (5) (6)

CONCAVE −0.0617 −0.0578 −0.0631 −0.0597 −0.0666 −0.0620
(−2.88) (−2.22) (−2.94) (−2.26) (−2.69) (−2.25)

BETA −0.0541 −0.0529 −0.0533 −0.0537 −0.0592 −0.061
(−1.62) (−1.24) (−1.62) (−1.25) (−1.64) (−1.38)

LN(SIZE) −0.0411 −0.0407 −0.0430 −0.0427 −0.0432 −0.0425
(−3.58) (−3.98) (−4.40) (−3.82) (−4.33) (−3.51)

B/M −0.0216 −0.0241 −0.022 −0.0223 −0.0142 −0.0108
(−0.81) (−0.60) (−0.78) (−0.52) (−0.48) (−0.25)

RUNUP 0.4276 0.4482 0.4060 0.4353
(2.32) (1.36) (1.95) (1.29)

MOM −0.0229 −0.0183 −0.025 −0.022
(−0.59) (−0.55) (−0.58) (−0.64)

LN(PRICE) 0.0055 0.0061 0.0063 0.0066
(0.46) (0.37) (0.58) (0.39)

NUMEST 0.0006 0.0005
(0.36) (0.28)

DISPERSION 0.0111 0.0235
(0.17) (0.47)

ANNBETA 0.005 0.0132
(0.36) (0.83)

Constant 0.7523 — 0.644 — 2.363 —
(0.33) (0.28) (0.99)

Fixed Effects No Quarter No Quarter No Quarter
Option Controls Yes Yes Yes Yes Yes Yes
Observations 1,720 1,720 1,720 1,720 1,674 1,674
R-squared 0.0117 0.0288 0.0131 0.0301 0.0135 0.0312
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Table 8: Concave IV curves and straddle-implied stock price moves prior to
EAD

This table presents results from contemporaneous panel regressions of the implied move of the
underlying stock price prior to the EAD (IMPMOVE) on CONCAVE and a set of firm-level char-
acteristics measured on the day prior to the EAD. IMPMOVE denotes the ratio of the sum of
the ATM put and call prices divided by the underlying stock price. CONCAVE is an indicator
variable that takes the value one when the IV curve is concave on the day prior to the EAD and
zero otherwise. The definition of the rest of the variables is provided in Appendix A. The sample
consists of quarterly earnings announcements during the period 2013-2019. Models (1), (3), and
(5), use two-way clustered standard errors, at the firm- and quarter-level. Models (2), (4), and (6),
include quarterly fixed effects. t-statistics are provided in parenthesis.

(1) (2) (3) (4) (5) (6)

CONCAVE 0.0231 0.0239 0.0131 0.0133 0.0099 0.0094
(7.79) (17.01) (6.23) (13.27) (6.15) (10.15)

BETA 0.0102 0.0094 0.0080 0.0064
(2.75) (5.77) (2.56) (4.34)

LN(SIZE) −0.0145 −0.0147 −0.0141 −0.0143
(−10.96) (−34.59) (−13.29) (−36.13)

B/M −0.0173 −0.0154 −0.0134 −0.0113
(−4.79) (−9.50) (−4.27) (−7.64)

RUNUP −0.0484 −0.0364 −0.0540 −0.0384
(−1.88) (−2.92) (−1.97) (−3.41)

MOM 0.0039 0.0084 0.0050 0.0097
(1.67) (6.75) (2.46) (8.44)

LN(PRICE) −0.0011 −0.0011 −0.0017 −0.0019
(−0.54) (−1.80) (−1.11) (−3.30)

NUMEST 0.0009 0.0010
(4.62) (15.99)

DISPERSION 0.0134 0.0145
(2.69) (8.66)

ANNBETA 0.0021 0.0012
(1.79) (2.34)

Constant 0.0536 — 0.2139 — 0.1900 —
(20.16) (11.62) (14.22)

Fixed Effects No Quarter No Quarter No Quarter
Observations 1,858 1,858 1,721 1,721 1,675 1,675
R-squared 0.1247 0.179 0.5552 0.6202 0.6004 0.6729
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